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Abstract—Pre-trained diffusion models have demonstrated
remarkable proficiency in synthesizing images across a wide range
of scenarios with customizable prompts, indicating their effective
capacity to capture universal features. Motivated by this, our study
delves into the utilization of the implicit knowledge embedded
within diffusion models to address challenges in cross-domain
semantic segmentation. This paper investigates the approach that
leverages the sampling and fusion techniques to harness the fea-
tures of diffusion models efficiently. We propose DIffusion Feature
Fusion (DIFF) as a backbone use for extracting and integrating
effective semantic representations through the diffusion process.
By leveraging the strength of text-to-image generation capability,
we introduce a new training framework designed to implicitly
learn posterior knowledge from it. Through rigorous evaluation in
the contexts of domain generalization semantic segmentation, we
establish that our methodology surpasses preceding approaches
in mitigating discrepancies across distinct domains and attains
the state-of-the-art (SOTA) benchmark. The implementation code
is released at https://github.com/Yux1angJi/DIFF.

Index Terms—Diffusion model, domain generalization, semantic
segmentation

I. INTRODUCTION

The paradigm of training segmentation models on large-scale
datasets has demonstrated significant successes; nevertheless,
the obstacles associated with the acquisition of data specific
to niche scenarios, continue to pose significant challenges.
Synthetic data, while complementing some missing data,
usually suffers from the issue of domain gaps. This issue
arises because models trained on limited synthetic data tend
to decline in accuracy when applied in real-world settings,
attributable to domain shifts in the test data [1], [2]. Research
has shown that one of the important factors is the representation
discrepancy caused when the perspective, background, style, or
imaging conditions are changed to the unseen domain [3]–[5].
Taking this issue, the study of Domain Generalization (DG)
focuses on reducing the domain variance performance and
improving the model robustness across unseen domains.

⋆ Contribute equally to the work.
† Corresponding author.

Recently, the stunning performance of diffusion models on
various tasks of image generation has attracted a great deal
of research attention. The pre-trained text-to-image diffusion
model (e.g., Stable Diffusion [6]) possesses the capability to
synthesis images of remarkable realism and high quality across
diverse styles, scenes, and categories, contingent upon the
customized prompts given. This indicates that the diffusion
model learns generic visual features while being able to
disentangle the representations of image features according
to conditional text inputs. Several studies also validate the
ability of pre-trained diffusion models on representational and
perceptual tasks [7]–[12]. Drawing inspiration from the implicit
universal knowledge embedded within pre-trained diffusion
models, it leads us to think: how to utilize such knowledge to
reduce the domain discrepancy in semantic segmentation?

We therefore introduce DIffusion Feature Fusion (DIFF), a
module based on the pre-trained Stable Diffusion model, to
collect and integrate the feature sets from the whole diffusion
process. Given an image from arbitrary domains, robust features
modeled in the diffusion embedding space could be extracted
from the Stable Diffusion. Different from similar studies [13],
[14] that use single-step denoising for extracting features, we
consider the diffusion trajectory as a more meaningful feature.
The feature sets from the whole multi-step diffusion process
will be fused by a convolutional fusion block and aligned
to the visual embedding from the standard backbones, e.g.
ResNet [15], Vision Transformer [16]. To further utilize the
conditional generation capability of the pre-trained diffusion
model and to address the absence of corresponding annotation
text as conditional input when doing prediction, we introduce
a special implicit posterior knowledge learning framework
for supervised learning. By leveraging vision-language joint
modeling, the implicit posterior knowledge from the conditional
generation capability of diffusion models could be learned to
maintain generalization when confronted with unseen data.

https://github.com/Yux1angJi/DIFF
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Figure 1: Overview of proposed diffusion feature fusion (DIFF) module and implicit posterior knowledge learning (IPKL)
training pipeline. (a) In the conditional branch, we extract the categories and reference masks from the semantic segmentation
annotations and use them as conditions, which are input into the DIFF module along with the input image. Through the DIFF
module, we obtain features enhanced with conditional information for supervised training. (b) In the unconditional branch, we
only use the image as input to the DIFF module and employ the prediction results from the conditional branch as a teacher for
consistency learning.

II. METHOD

By given a text-image paired dataset, the original generation-
purpose text-to-image diffusion model is set up to model a
process that gradually removes noise from a standard noise
distribution to an image distribution based on text prompt,
or in other words, it possesses the conditional distribution
p(X|C). As for standard segmentation tasks, let {X ,Y} be the
set of images and mask labels, the target is to learn p(Y|X ).
Considering text as a higher-level understanding, it is straight-
froward to leverage the prior knowledge p(X|C) of pre-trained
text-to-image diffusion models to help learn a more generalized
posterior distribution for segmentation models.

Therefore, like some recent perceptual works based on
diffusion models [7], [8], [11]–[14], we rely on the critical
denoising component U-Net [17] for a more generalized
encoding. Unlike the usual generative tasks where the noise
predicted by U-Net is gradually removed, we perform an inverse
process, that the predicted noise is gradually added to the input
image. Different from similar studies [7], [13] that use single-
step denoising for extracting features, we consider the whole
multi-step diffusion trajectory as a more meaningful feature.
In order to retain more information from pre-trained diffusion
model without disruption and to ensure that the features can be
utilized by the segmentation head model, we freeze the entire
U-Net and sample as many effective features as possible for
fusion, as detailed in Sec. II-A. On the other hand, considering
that standard segmentation tasks do not have text prompts
as input, we introduce a dual-stream network for learning
posterior knowledge to perform conventional segmentation
predictions, as detailed in Sec. II-B. The overview of the

proposed pipeline is shown in Fig. 1, where the training is
performed on two branches and the prediction is only performed
on the unconditional branch. The trainable modules of the two
branches share weights.

A. Diffusion Feature Fusion

In alignment with the architectural design and pre-training
scheme of diffusion model, we devise two distinct feature
sets from U-Net aimed at facilitating the integration of visual
and text semantic understanding. Specifically, we extract the
intermediate features {F inter

t,l } ∈ Rdl×wl×hl from each layer l
and each step t within the U-Net decoder as the visual represen-
tation, and the cross-attention maps {F cross

t,l } ∈ Rdl×wl×hl as
the interaction representations between visual and text content.
However, directly taking out the features of the whole process
layer by layer would lead to too numerous and unwieldy for
practical utilization, which is also the reason that many works
apply a one-step diffusion pipeline and hand-select the block,
step pairs by grid search. Inspired by DiffHyperfeature [11],
here we propose DIffusion Feature Fusion (DIFF) to fuse
features extracted from different layers with different steps
by an aggregating convolutional block, including a series of
convolution, normalization, and activation layers.

Formally, given intermediate features {F inter
t,l } and cross-

attention maps {F cross
t,l } from the diffusion process of the input

images, the final features for segmenting Fdiff takes the form

Fdiff = Fconv(⊕t,l[F inter
t,l ,F cross

t,l ]), (1)

where ⊕t,l means the concatenation across t and l.
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Figure 2: Segmenting prediction on the unseen data of existing SOTA domain generalization (DG) semantic segmentation
methods (DAFormer [18], ReVT [19], CMFormer [20]) and our method.

B. Implicit Posterior Knowledge Learning

In order to learn posterior knowledge p(Y|X ) for standard
semantic segmentation from the prior knowledge p(X|C) of pre-
trained diffusion models, we still have two unresolved issues:
(1) The first issue is that original text-to-image diffusion models
are set up to model the relationship between the overall textual
description and the image, which leaves a gap to the pixel-level
fine-grained segmentation. (2) The second issue is that there
are no reference guided input provided when predicting in the
standard semantic segmentation tasks. To address these two
issues, we adopt path controlled diffusion in Sec. II-B1 and
unconditional consistency learning in Sec. II-B2.

1) Path Controlled Diffusion
To ensure the extracted features correspond more pre-

cisely with the textual prompts, we adopt a training-free
method following MultiDiffusion [21]. By given segmen-
tation data {X ,Y} during training, where X are images
and Y are pixel-level semantic annotations, we decompose
the annotations Y into multiple groups of masks M ∈
{0, 1}cls×w×h and their corresponding category descriptions
C ∈ {sky, vegetation, road, people, car, ...}cls, where cls rep-
resents the number of all categories. Then we feed the category
descriptions C as text prompts into the diffusion model and
fuse the predicted latent variables by the corresponding masks
M at each diffusion step, formulate as

It+1(It,M, C) =
cls∑
i=1

Mi∑cls
j=1 Mj

[Mi ⊙ (Φ(It, Ci))], (2)

where Φ represents the pre-trained text-to-image diffusion
model and I represent the latent variables.

Then by feeding such conditional features extracted by DIFF
to the segment head D, we could train the entire model using
cross-entropy, just like in conventional segmentation models as

Lcondit = CE(D(F con
diff (X ,M, C)),Y). (3)

2) Unconditional Consistency Learning
To address the issue of not having corresponding text prompts

during prediction, we set up an additional unconditional branch

as shown in Fig. 1. In this branch, the diffusion features Funcon
diff

are acquired with DIFF through an unconditional process
p(F|X , C = ∅). On this basis, we simply employ a L2 loss for
consistency learning between the outputs from two branches,
forcing them to produce nearly identical outputs, as

Lconsis = ∥D(F con
diff (X ,M, C)), D(Funcon

diff (X ))∥2. (4)

In this way, the implicit posterior knowledge learned from the
conditional generative model could be gradually distilled onto
the unconditional input branch for predicting. The complete
learning objective is the combination of conditional segmenta-
tion loss Lcondit and consistency loss Lconsis as

Lfinal = λ1Lcondit + λ2Lconsis. (5)

Here, λ1 and λ2 are two hyper-parameters to control the
weights of two objectives, which are both set to 1 in our
experiments.

III. EXPERIMENTS

A. Experimental Setup

Following the setup of prior research on domain general-
ization for semantic segmentation [13], [18], [22], the model
trained on a source domain dataset will be evaluated on a series
of unknown target datasets. Based on two synthetic datasets
GTAV [23] and Synthia [24], three real-world clear datasets
Cityscapes (CS) [25], BDD-100K (BDD) [26], and Mapillary
Vistas (MV) [27], and two real-world adverse weather datasets
ACDC [28] and Dark Zurich (DZ) [29], we consider two
practically significant generalization tasks: synthetic-to-real
and real-to-adverse. Synthetic-to-real: We use two synthetic
datasets GTAV and Synthia as source domain, and five real-
world datasets CS, BDD, MV, ACDC, and DZ as target domain.
Real-to-Adverse: We use clear dataset CS as source domain,
and two adverse weather datasets ACDC and DZ as target
domain.

For implementation, our DIFF module is based on the
released Stable-Diffusion v2-1 [6] checkpoint, and we use the
same decoder head and training settings as in DAFormer [18].



Table I: Synthetic-to-real DG results comparing to SOTA
methods on GTAV source domain. Training is performed on
synthetic dataset GTAV [23]. Evaluation is performed on five
real-world datasets with 19 categories.

DG Method Backbone mIoU (%) on

CS [25] BDD [26] MV [27] Avg3 ACDC [28] DZ [29] Avg5

IBN-Net [30] ResNet-101 37.37 32.29 33.84 33.15 - - -
FSDR [22] ResNet-101 44.80 41.20 43.40 43.13 24.77 9.66 32.77
SAN-SAW [31] ResNet-101 45.33 41.18 40.77 42.23 - - -
ReVT [19] MiT-B5 49.96 48.01 53.06 50.34 41.15 21.99 42.84
DAFormer [18] MiT-B5 52.65 47.89 54.66 51.73 38.25 17.45 42.18
CMFormer [20] SWin-B 55.31 49.91 60.09 55.10 41.34 22.58 45.85
PromptDiff [13] Diffusion 52.00 - - - - - -

Ours Diffusion 58.01 53.60 59.85 57.15 46.32 34.27 50.41
+2.70 +3.69 -0.24 +2.05 +4.98 +11.69 +4.56

Table II: Synthetic-to-real DG results comparing to SOTA
methods on Synthia source domain. Training is performed on
synthetic dataset Synthia [24]. Evaluation is performed on five
real-world datasets with 16 categories.

DG Method Backbone mIoU (%) on

CS [25] BDD [26] MV [27] Avg3 ACDC [28] DZ [29] Avg5

IBN-Net [30] ResNet-101 32.04 30.57 32.16 31.59 - - -
FSDR [22] ResNet-101 40.80 39.60 37.40 39.30 - - -
SAN-SAW [31] ResNet-101 38.92 35.24 34.52 36.23 - - -
DAFormer [18] MiT-B5 44.08 33.20 42.99 40.09 26.62 14.14 32.21
ReVT [19] MiT-B5 46.28 40.30 44.76 43.78 35.75 20.10 37.44
CMFormer [20] SWin-B 44.59 33.44 43.25 40.43 34.50 19.57 35.07
PromptDiff [13] Diffusion 49.10 - - - - - -

Ours Diffusion 49.31 42.20 49.47 46.99 36.27 23.39 40.13
+0.21 +1.90 +4.71 +3.21 +0.52 +3.29 +2.69

Remark:
In tables, the best results are highlighted in bold, while the

second best is underlined.

B. Results

Under the synthetic-to-real setting as shown in Tab. I, our
method is demonstrated to outperform the previous SOTA DG
methods based on ResNet-101 [15], MiT-B5 [32], SWin-B [33],
and diffusion backbones. Specifically, our method shows higher
improvements (4.98% and 11.69%) on the two adverse weather
datasets ACDC and DZ, that the data with larger domain
discrepancies. Comparing to the PromptDiff [13] which is also
a diffusion-based method, our performance surpasses it by
6.01% on GTAV → CS. We also extend the experiments on
the synthia source domain in Tab. II for further validation.

Since our method freezes most of the network parameters,
the learning capacity in the source domain could be limited.
Under the real-to-adverse setting as shown in Tab. III, in
settings with smaller domain differences (i.e., CS → ACDC),
our method is inferior (-1.30%) to those based on a transformer
backbone, but it shows significant improvement (+4.38%) in
settings with larger domain differences (i.e., CS → DZ).

Fig. 2 provides some visual examples of semantic segmen-
tation results from our method comparing to the previous
SOTA DG methods. It shows that our method improves the
generalization on the unseen data to a large extent, especially
on the road, sidewalk categories.

C. Ablation Study

We evaluate the effects of proposed diffusion feature fusion
(DIFF) and implicit posterior knowledge learning (IPKL) with
different consistency losses on the overall results in Tab. IV.

Table III: Clear-to-adverse DG results comparing to SOTA
methods on Cityscapes source domain. Training is performed
on clear dataset Cityscapes [25]. Evaluation is performed on
two adverse weather datasets with 19 categories.

DG Method Backbone mIoU (%) on

ACDC [28] DZ [29] Avg2

FSDR [22] ResNet-101 47.18 22.60 34.89
SAN-SAW [31] ResNet-101 49.00 24.80 36.90
DAFormer [18] MiT-B5 55.15 28.28 41.72
CMFormer [20] SWin-B 60.21 33.90 47.05
PromptDiff [13] Diffusion 58.60 34.00 46.30

Ours Diffusion 58.91 38.38 48.65
-1.30 +4.38 +1.60

Table IV: Ablation study on the proposed components DIFF
and IPKL with different consistency losses.

DIFF IPKL Lconsis
mIoU (%) on

GTAV [23] → CS [25]

– – – 49.72 (baseline)
✓ – – 56.28 (+6.56)

✓ ✓ w/o. Lconsis 44.82 (-4.90)
✓ ✓ KL Loss 57.81 (+8.09)
✓ ✓ L2 Loss 58.01 (+8.29)

(a) Data (b) w/o. IPKL (c) w/. IPKL 
w/o. reference input

(d) w/. IPKL 
w/. reference input

Figure 3: Heatmap (on sidewalk) and segmentation results
comparision between (b) w/o. IPKL; (c) w/. IPKL and w/o.
reference input; (d) w/. IPKL and w/. reference input.

The results indicate that both DIFF and IPKL could improve
the domain generalization performance of the model, while
only introducing the IPKL training framework without using
consistency loss leads to significant performance degradation.
As for the choice of consistency loss function, both L2 loss
and KL loss contribute to improving consistency learning, and
the results of L2 loss are better.

As shown in Fig. 3, by introducing IPKL, the model could
predict results (c) on the unseen data without a guided reference
input similar to those (d) with a guided reference input. Both
of them are significantly superior to the results without IPKL
(b).

IV. CONCLUSION

This paper delves into the potential of representations from
pre-trained diffusion models in the challenging context of
domain generalization for semantic segmentation. By introduc-
ing DIffusion Feature Fusion (DIFF) and implicit posterior
knowledge learning (IPKL), the network could uniquely model
cross-domain features by leveraging the rich prior knowledge
of pre-trained diffusion models. Extensive experiments on
multiple settings demonstrated the superior performance of
our method compared to the existing domain generalization
semantic segmentation methods.
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