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Abstract

The vision-based geo-localization technology for UAV, serv-
ing as a secondary source of GPS information in addition
to the global navigation satellite systems (GNSS), can still
operate independently in the GPS-denied environment. Re-
cent deep learning based methods attribute this as the task of
image matching and retrieval. By retrieving drone-view im-
ages in geo-tagged satellite image database, approximate lo-
calization information can be obtained. However, due to high
costs and privacy concerns, it is usually difficult to obtain
large quantities of drone-view images from a continuous area.
Existing drone-view datasets are mostly composed of small-
scale aerial photography with a strong assumption that there
exists a perfect one-to-one aligned reference image for any
query, leaving a significant gap from the practical localiza-
tion scenario. In this work, we construct a large-range con-
tiguous area UAV geo-localization dataset named GTA-UAV,
featuring multiple flight altitudes, attitudes, scenes, and tar-
gets using modern computer games. Based on this dataset,
we introduce a more practical UAV geo-localization task in-
cluding partial matches of cross-view paired data, and ex-
pand the image-level retrieval to the actual localization in
terms of distance (meters). For the construction of drone-view
and satellite-view pairs, we adopt a weight-based contrastive
learning approach, which allows for effective learning while
avoiding additional post-processing matching steps. Experi-
ments demonstrate the effectiveness of our data and training
method for UAV geo-localization, as well as the generaliza-
tion capabilities to real-world scenarios.

Introduction
Vision-based UAV geo-localization, as an independent on-
board technology that can work independently of communi-
cation systems, enables UAVs to autonomously obtain GPS
information even when GNSS communication fails. This
UAV visual localization task could be refered as a special
case of cross-view geo-localization (Deuser, Habel, and Os-
wald 2023; Zheng, Wei, and Yang 2020; Hu et al. 2018).
Recent research formulates this as a cross-view image re-
trieval problem (Lin et al. 2022; Dai et al. 2023). Given a
drone-view image, the goal is to retrieve a matching scene
from a database of GPS-tagged satellite-view images to in-
fer the current GPS information of the UAV. Compared to
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Figure 1: Comparision between perfect matching pair and
partial matching pair.

traditional hand-crafted feature extraction algorithms, deep
learning based methods achieve higher accuracy and bet-
ter generalization performance (Tian, Chen, and Shah 2017;
Dusmanu et al. 2019). However, such superiority is built
upon the training on a large amount of paired matching im-
ages from drone-view and satellite-view.

Existing cross-view datasets are mostly composed of im-
age pairs from different platform views, e.g., ground cam-
eras and satellites (Workman, Souvenir, and Jacobs 2015;
Zhai et al. 2017; Liu and Li 2019). The datasets for UAV
localization follow this paradigm and expand the view to
drones (Zheng, Wei, and Yang 2020; Xu et al. 2024; Zhu
et al. 2023a; Dai et al. 2023). Due to high costs and pri-
vacy concerns, most of these data are obtained through
Google Earth Engine simulation, and the remaining real-
world data are very limited in terms of scale, height, angle,
etc. More critically, these datasets simply assume that each
query drone-view image has a perfectly one-to-one ailgned
matching satellite-view image as a reference, which does not
apply to practical scenarios because it is impossible to ob-
tain an arbitrary view of drone in advance and align it with a
satellite-view reference. Consequently, such perfect matches
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are very unlikely to exist in practical scenarios; instead, it is
more common to encounter partial matching pairs between
drone-view and satellite-view as shown in Fig. 1. This leads
to models trained on such paradigm datasets struggling to
handle practical UAV visual localization tasks.

In fact, some works already noticed the above problems,
and attempted to address it from both task desgin and data
construction perspectives. VIGOR (Zhu, Yang, and Chen
2021) introduces a beyond ont-to-one matching task for
ground-satellite matching. DenseUAV (Dai et al. 2023) and
UAV-VisLoc (Xu et al. 2024) are two continuous range real-
world drone-satellite paired datasets. Both of them expand
the retrieval task to localization; however, the former data
construction method still does not align with practical sce-
narios, and the latter lacks a definition of data pair con-
struction and task design. Additionally, these real-wolrd data
are limited in terms of scenes, camera angles, and flight
altitudes/attitudes, which restricts its generalization perfor-
mance in diverse scenarios.

In light of the above problems, we propose aligning di-
rectly with practical tasks at the data construction level by
expanding the original perfect matching to encompass par-
tial matching as Fig. 1. Under our setting, the drone-satellite
pairs are consturcted following the real-world scenarios,
where drone-view images are retrieved from a gallery of
satellite-view images containing partial matches. By con-
sturcting such retrieval task, we can recreate the real-wolrd
UAV visual geo-localization scenarios from the task design
and evaluate the localization performance based on the re-
trieval results. Based on this, to replicate various drone flight
conditions, we utilize commercial video games to simulate
and collect a contiguous large-range of drone-satellite image
pairs dataset GTA-UAV from multiple flight alittudes/atti-
tudes, and various flight scenarios. In total, 33,763 drone-
view images are collected from the entire game map, en-
compassing various scenes such as urban, mountain, desert,
forest, field, and coast.

In conjunction with this data consturction method, we in-
troduce a weighted contrastive learning approach weighted-
InfoNCE, to utilize the intersection ratio of the partially
matched data areas as weight labels for contrastive learn-
ing between the paired data. Exeperiments demonstrate that
through this training method, the network can reduce the
embedding distance of partially matched samples from dif-
ferent views, making retrieval and localization available.

Our contribution can be summarized as following:

• We introduce a new benchmark and dataset for the prob-
lem of UAV geo-localization. This dataset, for the first
time, expands the perfect matching UAV geo-localization
task to include partial matches, allowing for a more real-
istic task.

• We develop a weighted contrastive learning method
weighted-InfoNCE to enable the model to learn this par-
tial matching paradigm.

• We validate the effectiveness of proposed dataset and
method, and demonstrate their potential and generaliza-
tion capabilities in real-world tasks using a small amount
of available real data.

Related Work
Cross-view Geo-Localization Datasets
Due to the comprehensive coverage of high-altitude refer-
ence data such as satellite and aerial imagery, most stud-
ies use GPS-tagged satellite imagery as the reference view
for cross-view geolocalization. Among them, many datasets
focus on the cross-view matching between ground-level
and satellite-view (Lin, Belongie, and Hays 2013; Tian,
Chen, and Shah 2017; Liu and Li 2019; Zhai et al. 2017;
Zhu, Yang, and Chen 2021). Specifically, VIGOR (Zhu,
Yang, and Chen 2021) doubts the perfect one-to-one match-
ing data pairs and introduces the concept of beyond one-
to-one retrieval in ground-satellite matching. University-
1652 (Zheng, Wei, and Yang 2020) frist introduces the
drone-view into the cross-view datasets, where each drone-
satellite pair focuses on a target university building. Al-
though the drone’s perspective can serve as a retrieval tar-
get, the task still not achieve geolocalization. In following
works, DenseUAV (Dai et al. 2023) and SUES-200 (Zhu
et al. 2023a) change discrete sampling into continuous sam-
pling and consider different altitudes. Constrained by flight
costs and the limitations of Google Earth simulation, the va-
riety of shooting angles and altitudes reamins very limited.
Most importantly, these datasets construction methods still
adhere to the one-to-oen perfect matching paradigm and do
not align with practical scenarios. UAV-VisLoc (Xu et al.
2024) is a recently released real high-altitude drone dataset
where each drone-view image is geotagged, while no clear
task desgin has been defined for this data yet.

Cross-view Geo-Localization Methods
One of the first deep learning based geolocalization works
by Workman et al. (Workman, Souvenir, and Jacobs 2015)
demonstrates the superior accuracy and generalization of
CNNs compared to traditional hand-crafted features. They
simply utilize a L2 Loss to minimize the feature distance
between cross-views and perform retrieval based on feature
distances. Some works (Lin et al. 2015) adopt the idea of
contrastive learning, reducing the distance between positive
sample pairs. Vo et al. (Vo and Hays 2016) introduces a
triplet loss, which brings positive samples closer to the an-
chor while pushing negative samples farther away. Further,
Hu et al. includes a weight-shared NetVLAD-layer (Arand-
jelovic et al. 2016) to obtain better global descriptors. Yang
et al. and Zhu et al. (Yang, Lu, and Zhu 2021; Zhu, Shah, and
Chen 2022) explore the Transformer architecture in geolo-
calization to extract additional geometric properties. Specif-
ically, Zhu et al.(Zhu et al. 2023b) proposes research on
the unaligned case, i.e., the partial matching problem men-
tioned. However, their experiments are still conducted on
aligned datasets. Sample4Geo (Deuser, Habel, and Oswald
2023) adopts the recent pre-training approach used in vision-
language work CLIP (Radford et al. 2021), applying large
batch size contrastive learning to cross-view data. They en-
hance the learning effect by constructing numerous hard
negatives based on InfoNCE (van den Oord, Li, and Vinyals
2019).



Table 1: Comparison between the proposed GTA-UAV dataset and existing datasets for UAV visual geo-localization.

University SUES-200 DenseUAV UAV-VisLoc GTA-UAV (proposed)
Drone images 37,854 24,210 18,198 6,742 33,763
Drone-view GPS locations Aligned Aligned Aligned - Arbitrary
Altitude range ∼ 50m 150m ∼ 300m 80m ∼ 100m 400m ∼ 840m 80m ∼ 650m
Contiguous area × × ✓ ✓ ✓
Evaluation in terms of meters × × × ✓ ✓
Multiple attitudes ✓ × × × ✓
Multiple scenes × × × ✓ ✓
Multiple scales satellite images × × × - ✓
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Figure 2: The paired data construction process of GTA-UAV, where Positive and Semi-positive satellite-view are paired with
Drone-view by IOU.

GTA-UAV Dataset
Problem Statement

Given a filed of view (FOV) captured by the UAVs, our tar-
get is to construct a GPS-tagged reference satellite-view im-
ages set from a contiguous area and localize the drone by
finding a matching field within it. Due to the varying flight
altitudes and attitudes of UAVs, the FOV can cover multi-
ple scales of the ground area. To accommodate the varying
scales of drone-view, we divide the reference satellite-view
of the entire coverage area into multiple hierachical tiles us-
ing a tiled map approach, where the ground resolution be-
tween different levels differing by a factor of two. Unlike the
aligned one-to-one retrieval strong assumption of existing
datasets in Tab. 1, we do not center-align the drone-satellite
pairs. Instead, we use a collect-then-match approach, pairing
them by calculating the overlapping of the ground area cov-
ered by the two views. In such arbitrarily sampling way, the
relationship between pairs changes from perfectly aligned
matching to partial matching. Refer to the definition of pos-
itive samples in VIGOR (Zhu, Yang, and Chen 2021), we
attribute samples with a ground area intersection over union
(IOU) greater than 0.39 as a positive pair, and IOU greater
than 0.14 as a semi-positive pair. The positive pairs are con-
sidered as ground truth for retrieval for their highest match,
while semi-positive pairs are complementary to the paritial
matching learning. Such paritial matching, in contrast to the
strong assumption of perfect matching, can be considered
a more challenging retrieval task. On the basis of coarse re-
trieval, since each of our view data points is GPS-tagged, we

can also evaluate the retrieval results at the distance level.
This provides a foundation for fine localization in further re-
search. Comparing to the existing datasets for UAV visual
geo-localization as Tab. 1, our proposed GTA-UAV dataset
offers higher flexibility and can cover a wider range of task
scenrarios. We believe that our dataset complements existing
UAV visual localization datasets and significantly bridge the
gap between current research and practical applications.

Data Collection and Construction
In light of the existing works (Richter et al. 2016; Ros
et al. 2016; Kiefer, Ott, and Zell 2022) on synthetic data,
we utilize Grand Thef Auto V (GTAV) as a simulation
platform. We collect 33,763 drone-view images covering
distinctive areas in the whole game map, including urban,
mountain, desert, forest, field, and coast. To cover various
flight altitudes and attitudes of UAVs, we simulate multi-
ple flight heights ranging from 80m to 650m, and multi-
ple camera angle ranges for roll ϕ ∈ [−10◦, 10◦], pitch
θ ∈ [−100◦,−80◦] and yaw ψ ∈ [−180◦, 180◦]. The raw
drone-view images are captured in 1920 × 1440 with GPS
tagged for meter-level evaluation. Based on the entire game
map’s area of 81.3km2, we utilize a staellite map with a
ground resolution of about 0.2m and divide it into a total
of 8 hierarchical tiles. Each tile image has a pixel resolu-
tion of 256 × 256, where the highest zoom level tiles hav-
ing a ground resolutino of about 0.27m. We collect totaling
14,640 tiles from zoom levels 4 to 7 as reference satellite-
view set, to accommodate possible flight altitudes. For each
drone-view image, we record the GPS information, flight al-
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Figure 3: The overview of our training and inference pipeline. (left) We use ViT as feature encoder and weighted-InfoNCE
for training positive and semi-positive batched samples from mutually exclusive sampling. (right) Then the retrieval could be
based on discriminative features to achieve localization.

titude, flight attitude, and camera angle at the time of cap-
ture. By combining the FOV angle setting, we could approx-
imate the ground area covered by the drone-view FOV. Then
by enumerating the nearby satellite tiles from each level for
each drone-veiw image, we set those with a ground coverage
IOU greater than 0.39 as a positive drone-satellite pair, and
the IOU between 0.14 and 0.39 as a semi-positive drone-
satellite pair as shown in Fig. 2. The detailed construction
process and dataset statistics are put in the supplementary.

The Evaluation Protocal
Based on the existing works of geo-localization (Zhu, Yang,
and Chen 2021; Dai et al. 2023; Zheng, Wei, and Yang
2020), we utilize two retrieval-based metrics (Recall@K,
AP) and one localization-related metric (SDM@K (Dai et al.
2023)) for evaluation. In addition, we include distance er-
ror between the retrieval results and the query location as
an evaluation method. Based on this, we introduce two ap-
plication scenarios as the same in VIGOR (Zhu, Yang, and
Chen 2021): same area and cross area. The same area rep-
resents the scenario where both the training and the testing
data pairs are sampled from the same area, reflecting ap-
plications where the flight area data is available. The cross
area represents the case that the training and testing data are
seperated. Under this setting, we divide half of the game map
into training data and evaluate on the other half, and these
areas differ on the scenes.

Geo-localization via Cross-view Matching
Baseline Framework
Large-scale UAV geo-localization necessitates a trade-off
between accuracy and performance. Practical application
scenarios demand that the pipeline avoids complex pre-
processing and post-processing steps. We avoid introduc-
ing additional matching modules in the retrieval-based
paradigm, allowing the reference statellite-view set to be
processed offline and retrieval to be performed through sim-
ple distance similarity measures. Recent works typically use

a Siamese Network to encode cross-view images and train
a model for generating cross-view descriptors using Triplet
loss or some variant of metric learning (Deuser, Habel, and
Oswald 2023; Vo and Hays 2016; Hu et al. 2018; Li et al.
2023; Zhu, Shah, and Chen 2022). To simplify the entire
pipeline and align with the model structure of standard vi-
sual tasks for simply comparing different data pre-training
effects, we directly utilize a pair of weight-sharing original
Vision-Transformer (ViT) models (Dosovitskiy et al. 2021)
with default Multi-Layer Perceptron (MLP) head as the de-
scriptor model, without introducing any additional fusion
modules. We follow the training approach using Symmet-
ric InfoNCE from Sample4Geo (Deuser, Habel, and Oswald
2023) as the baseline, leveraging all available negatives in
batch learning.

Weighted Positive Training
Directly utilizing the original Triplet loss or symmetric In-
foNCE loss allows the constructed paired data to be treated
as positive samples and non-paired data as negative samples
for contrastive learning. This approach works well in one-to-
one perfect matching pairs. However, in our arbitrary partial
matching paired data, treating all degrees of partial match-
ing as equal-weight positive samples could introduce signif-
icant bias, affecting the learning result and training stability.
Based on our data consturction method, we utilize the IOU
of ground area covered by cross-view pairs IOUqr+ as addi-
tional supervision information for contrastive learning as:

Lweighted-InfoNCE(Fq, αq, FR) =

− αq log
exp(Fq · Fr+/τ)∑R
i exp(Fq · Fri/τ)

− (1− αq)

R∑
i

log
exp(Fq · Fr+,−

i
/τ)∑R

j exp(Fq · Frj/τ)

= αqLInfoNCE(Fq, FR) + (1− αq)Luniform-InfoNCE(Fq, FR),
(1)



whereFq represents an encoded query image from one-view,
FR represents the encoded reference images from another
view in the same batch, and r+ represents positive/semi-
positive reference pair. The τ denotes a learnable parame-
ter (Radford et al. 2021). The weight coefficients αq are cal-
culated by parametric Sigmoid as Eq. 2:

αq = σ(k, IOUqr+) = 1− 1

1 + exp(−k × IOUqr+)
, (2)

where k is a hyper-parameter and higher value represents
greater curvature change. When k approaches infinity, the
loss function degenerates into the standard InfoNCE. In one
single batch with batch size N , there are N positive/semi-
positive paired samples with positive weights, and the
reamining N × (N − 1) combinations are regarded as neg-
ative samples. The loss function uses dot-production as the
similarity measurement, where positive/semi-positive sam-
ples are pushed towards higher values and negative samples
towards lower. Building on the original InfoNCE, we incor-
porate weights for positive/semi-positive sample pairs into
the loss function, introducing a degree of flexibility. This
allows the model to adapt the similarity loss based on the
extend of partial matching.

Mutually Exclusive Sampling
In the training process based on symmetric InfoNCE in-
troduced in above sections, to establish the negative rela-
tionship between sample pairs, we need to sample N pairs
of mutually independent positive sample pairs within each
batch. Since there is no guaranteed one-to-one relationship
between drone and satellite views in our arbitrary partial
matching data construction process, each view image could
have neighboring relationships with multiple cross-view im-
ages. In this situation, to adapt to the training pipeline, we
utilize a mutually exclusive sampling method as Alg. 1. By
considering each view image as a node in graph theory and
the matching relation as an undirected edge, for each batch,
we remove the sampled nodes and all their adajacent nodes.
We then continue sampling from the remaining graph set to
avoid having related cross-view data within the same batch.

Experiments
Implementation Details
In our exeperiments the ViT-Base (Dosovitskiy et al. 2021)
with patch-size 16 × 16 and 64M parameters is adopted
as the image encoding architecture. Both drone-view im-
ages and satellite-view images are resized to 384 × 384
before feeding into the network. The hyper-parameter k of
weighted-InfoNCE is set to 5 as default, and the learnable
temperature parameter τ is initialized to 1. Following Sam-
ple4Geo (Deuser, Habel, and Oswald 2023), we employ
Adam optimizer (Kingma and Ba 2017) with a initial learn-
ing rate of 0.0001 and a cosine learning rate scheduler to
train each experiment for 10 epochs in batch size of 64. The
flipping, rotation, and grid dropout are included as data aug-
mentation for training. Both positive and semi-positive pairs
are used for training by default if not specifically noted, and
we conduct experiments on this in the subsequent subsec-
tions. The further details are put in the supplementary.

Algorithm 1: Mutually Exclusive Sampling process
Data: partial paired data

E = {(q1, r1), (q2, r2), . . . , (qN , rN )}, batch
size b

Result: exclusive batched data D = {{q, r}b, ...}
Initialize D = ∅, Dbatch = ∅, Gstack = ∅, Gremain = E;
for i← 1 to N/b do

for e ∈ Gremain do
qi, ri ← e;
Dbatch ← Dbatch ∪ (qi, ri);
for qi, rj ← E[qi] do

Gremain ← Gremain \ (qi, rj);
Gstack ← Gstack ∪ (qi, rj);

for qj , ri ← E[ri] do
Gremain ← Gremain \ (qj , ri);
Gstack ← Gstack ∪ (qj , ri);

if len(Dbatch) = b then
D ← D ∪Dbatch;
Dbatch ← ∅;
Gremain ← Gremain ∪Gstack;
Gstack ← ∅;

return D;

Evaluation Metrics
For each drone-view query, the top-K images with the high-
est cosine similarity in the feature embedding space from the
satellite-view database would be considered as the retrieval
results. Following the previous works (Deuser, Habel, and
Oswald 2023; Zheng, Wei, and Yang 2020; Zhu, Yang, and
Chen 2021), we first evaluate the retrieval task by Recall@K
(R@K) and average precision (AP). We also include Spa-
tial Distance Metric SDM@K (Dai et al. 2023) as the com-
bined metric for retrieval and localization to further evaluate
the positioning performance, where the calculation method
is provided in the supplementary. Considering the average
number of references a query may match, we use SDM@3
here. More intuitively, we provide the distance between the
location of the top-1 retrieval result and the location of the
drone-view query (Dis@1) as an evaluation metric.

GTA-UAV Dataset Benchmark
For our GTA-UAV dataset, we compare the proposed
method with previous SOTA training methods under both
cross-area and same-area settings using positive + semi-
positive and positive-only as training data respectively. As
results in Tab. 2, in the proposed paritial matching set-
tings, our proposed weighted-InfoNCE achieves the best re-
sults across all metrics. Specifically, comparing to the previ-
ous SOTA method (Deuser, Habel, and Oswald 2023) us-
ing InfoNCE, our method improves the R@1 for 7.74%,
and Dis@1 for 109.29m in the cross-area setting trained on
positive + semi-positive data. The results trained on posi-
tive + semi-positive data have less retrieval accuracy com-
paring to the results only trained on positive data. This
is because that the retrieval evaluation considers only the



Table 2: Performance on GTA-UAV comparing to different training methods. MES means Mutual Exclusive Sampling.

Methods Cross-Area Same-Area

R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓ R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
Positive-only
Triplet Loss (Ltriplet) 43.41% 66.70% 53.56% 61.26% 756.95m 68.22% 87.99% 76.73% 79.17% 438.38m
InfoNCE Loss (LInfoNCE) 49.57% 72.84% 59.68% 65.53% 612.22m 72.99% 90.64% 80.76% 80.40% 363.67m
InfoNCE Loss (LInfoNCE, w/. MES) 52.64% 74.63% 62.40% 67.64% 552.90m 72.34% 91.42% 80.86% 81.57% 369.59m
Ours (Lweighted-InfoNCE, w/. MES) 57.52% 80.10% 67.24% 72.33% 444.13m 75.97% 94.53% 83.35% 82.80% 325.61m

Positive + Semi-positive
Triplet Loss (Ltriplet) 24.78% 46.99% 35.13% 58.79% 879.06m 46.55% 85.07% 62.95% 87.63% 252.88m
InfoNCE Loss (LInfoNCE) 35.83% 63.79% 48.08% 68.15% 576.41m 51.88% 89.75% 67.74% 88.85% 204.08m
InfoNCE Loss (LInfoNCE, w/. MES) 45.97% 71.43% 57.19% 71.48% 460.08m 65.89% 93.09% 77.84% 88.52% 193.19m
Ours (Lweighted-InfoNCE, w/. MES) 55.91% 81.07% 66.56% 76.35% 342.05m 82.95% 97.86% 89.65% 90.48% 119.05m

Figure 4: Meter-level localization accuracy of different methods on (left) cross-area and (right) same-area.

Table 3: Performance on GTA-UAV comparing to different pre-training datasets.

Pre-train datasets Cross-Area Same-Area

R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓ R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
ImageNet (Deng et al. 2009) 9.74% 21.73% 15.74% 33.58% 1841.30m 10.65% 23.90% 17.15% 36.82% 1470.50m

Perfect Matching
University-1652 (Zheng, Wei, and Yang 2020) 32.16% 54.19% 41.79% 54.07% 991.64m 30.90% 51.88% 40.08% 51.62% 1166.06m
SUES-200 (Zhu et al. 2023a) 35.29% 56.85% 44.85% 55.32% 920.62m 32.24% 52.63% 41.38% 52.58% 1138.93m
DenseUAV (Dai et al. 2023) 12.89% 23.03% 17.85% 32.33% 1848.47m 12.14% 22.06% 17.11% 30.25% 2115.03m

Partial Matching
GTA-UAV 55.91% 81.07% 66.56% 76.35% 342.05m 82.95% 97.86% 89.65% 90.48% 119.05m

positive references as the correct result, which is precisely
the training target of the positive data. However, for the
localization task, the results trained on both positive and
semi-positive data achieve better results in the SDM@3 and
Dis@1 metrics. This is because the semi-positive data en-
able the model to learn a more comprehensive understand-
ing of partial matching relationships. The further analysis of
proposed weighted-InfoNCE are put in the supplementary.

In the above sections, we discuss about the significance
of the unaligned partial N-to-N matching paradigm for real-
world scenarios. Here we categorize the existing UAV geo-
localization datasets as perfect matching data, and com-
pare the performance of models pre-trained on these perfect
matching datasets with their performance on our proposed
partial matching GTA-UAV dataset. The results in Tab. 3
demonstrate a significant gap between these two tasks, and
highlight the substantial importance of our proposed GTA-
UAV data for more practical partial matching tasks.

GTA-UAV Transfer Capability
To further demonstrate the significance of the proposed
GTA-UAV dataset for real-world application scenarios, we

evaluate the transferability of its pre-trained model to real
data with limited number and scenarios. We select a recently
released drone-view dataset, UAV-VisLoc (Xu et al. 2024),
which lacks data pairing and task design, as real data. It in-
cludes 6,742 high-altitude, downward-facing images from
UAVs, covering several continuous area, and each image
is GPS-tagged. These settings are included in the GTA-
UAV dataset, making it a suitable target subset to evaluate
the transferability of our dataset. By using the same data
construction method as GTA-UAV, we pair the hierarchical
satellite-view images from seven regions and apply identi-
cal training and evaluation settings. The detailed experiment
setup and implementations are put in the supplementary. As
shown in Tab. 4, comparing to ImageNet, University, SUES-
200, and DenseUAV, the model pre-trained on GTA-UAV
shows the best zero-shot performance on real UAV geo-
localization dataset with cross-area setting. Specifically, the
R@1 is 6.15% higher than the second-best result, and the AP
is 9.5% higher. Similarly, after fine-tuning on UAV-VisLoc,
the model pre-trained on GTA-UAV still maintains the high-
est performance, where the distance error of top-1 retrieval
Dis@1 is reduced by 16.47m.



Table 4: Transfer performance on UAV-VisLoc with same-area setting comparing different pre-training datasets.

Exp. Setup Pre-training datasets Same-Area

R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
zero-shot ImageNet (Deng et al. 2009) 8.35% 16.47% 13.16% 26.53% 2615.08m
zero-shot University-1652 (Zheng, Wei, and Yang 2020) 9.61% 19.70% 14.73% 31.67% 2285.08m
zero-shot SUES-200 (Zhu et al. 2023a) 16.71% 27.84% 22.93% 34.07% 1959.02m
zero-shot DenseUAV (Dai et al. 2023) 18.79% 27.09% 23.65% 32.95% 2051.58m
zero-shot GTA-UAV 24.94% 42.59% 33.15% 41.40% 1689.24m
fine-tune ImageNet (Deng et al. 2009) 74.41% 92.36% 83.29% 80.94% 166.63m
fine-tune University-1652 (Zheng, Wei, and Yang 2020) 73.91% 93.10% 82.05% 82.01% 170.23m
fine-tune SUES-200 (Zhu et al. 2023a) 74.44% 92.61% 81.95% 82.10% 150.22m
fine-tune DenseUAV (Dai et al. 2023) 77.09% 92.61% 83.82% 82.05% 139.34m
fine-tune GTA-UAV 80.20% 96.53% 87.83% 85.46% 122.87m

Table 5: Performance on GTA-UAV of different models.

Model R@1↑ AP↑ SDM@3↑ Dis@1↓
Cross-Area
ResNet-101 13.74% 23.06% 48.06% 1126.52m
ConvNeXt-Base 55.36% 66.14% 74.91% 386.35m
Swinv2-B 53.70% 65.13% 77.07% 343.30m
ViT-Base/16 55.91% 66.56% 76.35% 342.05m
Same-Area
ResNet-101 58.10% 69.98% 82.64% 371.78m
ConvNeXt-Base 80.39% 87.26% 89.13% 190.87m
Swinv2-B 78.27% 85.94% 88.70% 198.34m
ViT-Base/16 82.95% 89.65% 90.48% 119.05m

Table 6: Performance on GTA-UAV of different data scales.

Data Scale R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
Cross-Area
300 36.94% 61.12% 47.75% 61.64% 809.48m
3,000 48.43% 74.75% 59.98% 72.39% 482.25m
33,763 55.91% 81.07% 66.56% 76.35% 342.05m
79,852 56.01% 82.19% 66.93% 76.17% 343.10m

Same-Area
300 46.64% 73.13% 58.17% 71.68% 714.11m
3,000 65.56% 89.26% 75.95% 84.22% 368.58m
33,763 82.95% 97.86% 89.65% 90.48% 119.05m
79,852 84.45% 98.53% 90.71% 92.37% 76.81m

Ablation Study
Architecture Evaluation
In existing cross-view geo-localization (Deuser, Habel, and
Oswald 2023; Hu et al. 2018; Toker et al. 2021; Zhu,
Shah, and Chen 2022) research, CNNs and Transformers are
widely explored for learning useful representations. Some
studies make adaptive modifications to achieve better learn-
ing capabilities (Zhu, Shah, and Chen 2022; Hu et al. 2018;
Zhu et al. 2023b). Unlike previous tasks, in the GTA-UAV
cross-area task and its corresponding real-world scenarios,
the generalization to unseen data in unkown scenes needs
to be emphasized. Based on studies of model generaliza-
tion (Hoyer, Dai, and Van Gool 2023; Ji et al. 2024) and
SOTA geo-localization methods (Deuser, Habel, and Os-
wald 2023), we compare several standard architectures in
Tab. 5. The results show that the ViT has the best perfor-

Table 7: Performance on GTA-UAV comparing different
hyper-parameters.

Exp. Setup R@1↑ R@5↑ AP↑ SDM@3↑ Dis@1↓
Cross-Area
k = 1 51.36% 76.62% 61.72% 74.94% 398.65m
k = 5 55.91% 81.07% 66.56% 76.35% 342.05m
k = 20 51.50% 77.17% 62.55% 74.16% 411.12m
k →∞ 45.97% 71.43% 57.19% 71.48% 460.08m

Same-Area
k = 1 71.19% 95.35% 81.61% 89.42% 178.13m
k = 5 82.95% 97.86% 89.65% 90.48% 119.05m
k = 20 73.13% 95.58% 82.91% 89.04% 192.63m
k →∞ 65.89% 93.09% 77.84% 88.52% 193.19m

mance under the same order of magnitude parameters.

Data Scale Evaluation
To further explore the data quality of the proposed GTA-
UAV dataset, we validate the model performance under dif-
ferent training data scales. As shown in Tab. 6, under the
same-area setting, the performance of models in retrieval
and localization metrics imporve as the amount of data in-
creasing. However, due to the limited game scenarios, the
amount of effective data is also bounded. In the cross-area
setting, which emphasizes generalization performance, the
model performance stagnates despite the increase in data
scale. Considering the effectiveness of the data, we select
a quantity of 33,763 as the final dataset size.

Hyper-parameter Evaluation
We evaluate different hyper-parameter value k of proposed
weighted InfoNCE in Tab. 7. Different values exhibit vary-
ing sensitivity to the positive weight, and all these results
outperform when k →∞ (i.e., the standard InfoNCE).

Conclusion
We propose a new benchmark GTA-UAV for UAV geo-
localization with partial matching pairs, which is a more
practical setting. A weighted InfoNCE loss is introduced to
leverage the supervision of matching extends. Extensive ex-
periments validate the effectiveness of our data and method
for UAV geo-localization and demonstrate the potential in
real-world scenarios. This work provides a paradigm aligned
with real-world tasks for future research.
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